Part Number Hot Search : 
SD215 AS17461 14094BC MBT2222A LS7166 10M5X 30010 N5VD54C
Product Description
Full Text Search
 

To Download IXGT60N60C3D1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 GenX3TM 600V IGBTs with Diode
High Speed PT IGBTs for 40-100kHz switching
IXGH60N60C3D1 IXGT60N60C3D1
VCES IC110 VCE(sat) tfi (typ)
= = =
600V 60A 2.5V 50ns
TO-247 (IXGH)
Symbol VCES VCGR VGES VGEM IC25 IC110 IF110 ICM IA EAS SSOA (RBSOA) PC TJ TJM Tstg TL TSOLD Md Weight
Test Conditions TJ = 25C to 150C TJ = 25C to 150C, RGE = 1M Continuous Transient TC = 25C, (Limited by Leads) TC = 110C TC = 110C TC = 25C, 1ms TC = 25C TC = 25C VGE = 15V, TVJ = 125C, RG = 3 Clamped Inductive Load TC = 25C
Maximum Ratings 600 600 20 30 75 60 26 300 40 400 ICM = 125 VCE VCES 380 -55 ... +150 150 -55 ... +150 V V V V A A A A A mJ A W C C C C C Nm/lb.in. g g Features Optimized for Low Switching Losses Square RBSOA High Avalanche Capability Anti-Parallel Ultra Fast Diode International Standard Packages G = Gate E = Emitter G C
C (Tab)
E
TO-268 (IXGT) G E
C (Tab)
C = Collector Tab = Collector
Maximum Lead Temperature for Soldering 1.6 mm (0.062in.) from Case for 10s Mounting Torque (TO-247) TO-268 TO-247
300 260 1.13/10 4 6
Advantages High Power Density Low Gate Drive Requirement
Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) VGE(th) ICES IGES VCE(sat) IC = 250A, VCE = VGE TJ = 125C VCE = 0V, VGE = 20V IC = 40A, VGE = 15V TJ = 125C VCE = VCES, VGE= 0V
Characteristic Values Min. Typ. Max. 3.0 5.5 V 50 A 1 mA 100 2.2 1.7 2.5 nA V V
Applications High Frequency Power Inverters UPS Motor Drives SMPS PFC Circuits Battery Chargers Welding Machines Lamp Ballasts
(c) 2010 IXYS CORPORATION, All Rights Reserved
DS100009B(01/10)
IXGH60N60C3D1 IXGT60N60C3D1
Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) gfs Cies Coes Cres Qg Qge Qgc td(on) tri Eon td(off) tfi Eoff td(on) tri Eon td(off) tfi Eoff RthJC RthCK IC = 40A, VCE = 10V, Note 1 Characteristic Values Min. Typ. Max. 23 38 2810 210 80 115 22 43 21 33 0.80 70 50 0.45 21 33 1.25 112 86 0.80 0.21 S pF pF pF nC nC nC ns ns mJ ns ns mJ ns ns mJ ns ns mJ 0.33 C/W C/W TO-247 (IXGH) Outline Reverse Diode (FRED) Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) VF IRM trr RthJC IF = 30A, VGE = 0V, Note 1 Characteristic Values Min. Typ. Max. 2.7 TJ =150C 1.6 4 100 25 V V A ns ns 0.9 C/W
Terminals: 1 - Gate 3 - Emitter
e
TO-268 (IXGT) Outline
VCE = 25V, VGE = 0V, f = 1MHz
IC = 40A, VGE = 15V, VCE = 0.5 * VCES
Inductive Load, TJ = 125C IC = 40A, VGE = 15V VCE = 480V, RG = 3 Note 2
Terminals: 1 - Gate 3 - Emitter
2 - Collector Tab - Collector
110 0.80
Inductive Load, TJ = 125C IC = 40A, VGE = 15V VCE = 480V, RG = 3 Note 2
1
2
3
P
T = 100C IF = 30A, VGE = 0V, diF/dt =100 A/s, J TJ =100C VR = 100V IF = 1A; -di/dt = 100 A/s, VR = 30V
2 - Collector Tab - Collector
Dim.
Notes:
1. Pulse test, t 300s, duty cycle, d 2%. 2. Switching times & energy losses may increase for higher VCE(Clamp), TJ or RG.
Millimeter Min. Max. A 4.7 5.3 A1 2.2 2.54 A2 2.2 2.6 b 1.0 1.4 1.65 2.13 b1 b2 2.87 3.12 C .4 .8 D 20.80 21.46 E 15.75 16.26 e 5.20 5.72 L 19.81 20.32 L1 4.50 P 3.55 3.65 Q 5.89 6.40 R 4.32 5.49 S 6.15 BSC
Inches Min. Max. .185 .209 .087 .102 .059 .098 .040 .055 .065 .084 .113 .123 .016 .031 .819 .845 .610 .640 0.205 0.225 .780 .800 .177 .140 .144 0.232 0.252 .170 .216 242 BSC
7,157,338B2
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered 4,835,592 by one or more of the following U.S. patents: 4,850,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537
IXGH60N60C3D1 IXGT60N60C3D1
Fig. 1. Output Characteristics @ T J = 25C
80 70 60 VGE = 15V 13V 11V 9V 300 VGE = 15V 13V 250 11V
Fig. 2. Extended Output Characteristics @ T J = 25C
IC - Amperes
50 40 30 20 10 5V 0 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
IC - Amperes
200
150 9V 100
7V
50
7V 5V 0 2 4 6 8 10 12 14 16
0
VCE - Volts
VCE - Volts
Fig. 3. Output Characteristics @ T J = 125C
80 70 60 VGE = 15V 13V 11V 1.2
Fig. 4. Dependence of VCE(sat) on Junction Temperature
VGE = 15V 1.1 I
C
= 80A
VCE(sat) - Normalized
9V
1.0 0.9 I 0.8 0.7 0.6 0.5 I = 20A
C
IC - Amperes
50 40 30 20 10 0 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 5V 7V
= 40A
C
25
50
75
100
125
150
VCE - Volts
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage
6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 6 7 8 9 10 11 12 13 14 15
C
Fig. 6. Input Admittance
160 140 120
TJ = 25C
IC - Amperes
I
VCE - Volts
= 80A 40A 20A
100 80 60 40 20 0 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 TJ = 125C 25C - 40C
VGE - Volts
VGE - Volts
(c) 2010 IXYS CORPORATION, All Rights Reserved
IXGH60N60C3D1 IXGT60N60C3D1
Fig. 7. Transconductance
70 TJ = - 40C 60 50 25C 16 14 12 10 8 6 4 2 0 0 20 40 60 80 100 120 140 160 0 10 20 30 40 50 60 70 80 90 100 110 120 VCE = 300V I C = 40A I G = 10 mA
Fig. 8. Gate Charge
g f s - Siemens
40 30 20 10 0
VGE - Volts
125C
IC - Amperes
QG - NanoCoulombs
Fig. 9. Capacitance
10,000 140 120
Fig. 10. Reverse-Bias Safe Operating Area
Capacitance - PicoFarads
Cies
100
IC - Amperes
1,000 Coes
80 60 40
100 Cres
TJ = 125C RG = 3 dv / dt < 10V / ns
f = 1 MHz
10 0 5 10 15 20 25 30 35 40
20 0 100
150
200
250
300
350
400
450
500
550
600
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
1.00
Z(th)JC - C / W
0.10
0.01 0.0001
0.001
0.01
0.1
1
10
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXGH60N60C3D1 IXGT60N60C3D1
Fig. 12. Inductive Switching Energy Loss vs. Gate Resistance
4.0 3.5 3.0 Eoff VCE = 480V I 2.5 2.0 1.5 1.0 0.5 0.0 3 4 5 6 7 8 9 10 11 12 13 14 15 I C = 40A
C
Fig. 13. Inductive Switching Energy Loss vs. Collector Current
5.0 4.0 3.5 3.0 Eoff VCE = 480V Eon 4.0
Eon -
---
4.5 4.0 = 80A 3.5 3.0 2.5 2.0 1.5 1.0
TJ = 125C , VGE = 15V
----
3.5 3.0
RG = 3 , VGE = 15V
E on - MilliJoules
E off - MilliJoules
Eoff - MilliJoules
E on - MilliJoules
2.5 2.0 1.5 1.0 0.5 0.0 20 25 30 35 40 45 50 55 60 65 70 75 80 TJ = 125C
2.5 2.0 1.5 1.0 0.5 0.0
TJ = 25C
RG - Ohms
IC - Amperes
Fig. 14. Inductive Switching Energy Loss vs. Junction Temperature
3.5 3.0 2.5 Eoff VCE = 480V Eon 4.0 170 160
Fig. 15. Inductive Turn-off Switching Times vs. Gate Resistance
280 260 240
----
3.5 3.0 2.5
RG = 3 , VGE = 15V
150 140
tf VCE = 480V
td(off) - - - -
TJ = 125C, VGE = 15V
t d(off) - Nanoseconds
220 200 180
Eon - MilliJoules
t f - Nanoseconds
Eoff - MilliJoules
130 120 110 100 90 80 70 I
C
2.0 I C = 80A 1.5 1.0 0.5 0.0 25 35 45 55 65 75 85 95 105 115 I C = 40A
2.0 1.5 1.0 0.5 125
I
C
= 80A
160 140 = 40A 120 100 80 60
60 3 4 5 6 7 8 9 10 11 12 13 14 15
TJ - Degrees Centigrade
RG - Ohms
Fig. 16. Inductive Turn-off Switching Times vs. Collector Current
180 160 140 140 160 140 120 100 80
Fig. 17. Inductive Turn-off Switching Times vs. Junction Temperature
130
tf
VCE = 480V
td(off) - - - -
130 120
tf
VCE = 480V
td(off) - - - I C = 80A
120
RG = 3 , VGE = 15V
RG = 3 , VGE = 15V
t d(off) - Nanoseconds
t f - Nanoseconds
120 100 80 60 40 20 20 25 30 35 40 45 50 55 60 65 70 75 80 TJ = 25C TJ = 125C
110 100 90 80 70 60
t f - Nanoseconds
110 100 90 I C = 40A 80 70 60 125
t d(off) - Nanoseconds
60 40 20 25 35 45 55 65 75 85 95 105 115
IC - Amperes
TJ - Degrees Centigrade
(c) 2010 IXYS CORPORATION, All Rights Reserved
IXGH60N60C3D1 IXGT60N60C3D1
Fig. 18. Inductive Turn-on Switching Times vs. Gate Resistance
140 120 100 80 60 40 20 0 3 4 5 6 7 8 9 10 11 12 13 14 15 I = 40A 50 110 100 45 90
Fig. 19. Inductive Turn-on Switching Times vs. Collector Current
28
tr
VCE = 480V
td(on) - - - I = 80A
TJ = 125C, VGE = 15V
C
tr
VCE = 480V
td(on) - - - -
27 26
RG = 3 , VGE = 15V
t d(on) - Nanoseconds
t r - Nanoseconds
t r - Nanoseconds
40 35 30 25 20 15
t d(on) - Nanoseconds
80 70 60 50 40 30 20 10 20
25 TJ = 25C, 125C 24 23 22 21 20 19 18
C
25
30
35
40
45
50
55
60
65
70
75
80
RG - Ohms
IC - Amperes
Fig. 20. Inductive Turn-on Switching Times vs. Junction Temperature
110 100 90 29
tr
VCE = 480V
td(on) - - - -
28 27
RG = 3 , VGE = 15V
t d(on) - Nanoseconds
t r - Nanoseconds
80 70 60 50 40 30 20 25 35 45 55 65 75 85 95 105 115 I C = 40A I C = 80A
26 25 24 23 22 21 20 125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_60N60C3(6D)01-15-10-E
IXGH60N60C3D1 IXGT60N60C3D1
60 A 50 IF 40 30 20 10 0 200 1000 nC 800 Qr 30
TVJ= 100C VR = 300V
A 25 IRM 20
TVJ= 100C VR = 300V IF= 60A IF= 30A IF= 15A
TVJ= 150C TVJ= 100C TVJ= 25C
600
400
IF= 60A IF= 30A IF= 15A
15 10 5 0
0
1
2 VF
3V
0 100
A/s 1000 -diF/dt
0
200
400
600 A/s 800 -diF/dt
1000
Fig. 21 Forward current IF versus VF
2.0
Fig. 22 Reverse recovery charge Qr versus -diF/dt
90 ns 20
Fig. 23 Peak reverse current IRM versus -diF/dt
1.00 tfr 0.75 s
1.5 Kf 1.0
trr 80
TVJ= 100C VR = 300V
V V FR 15
IRM
70 0.5
IF= 60A IF= 30A IF= 15A
VFR
10
TVJ= 100C VR = 300V tfr
0.50
5
0.25
Qr
0.0 60 0 0.00 600 A/s 1000 800 diF/dt
0
40
80
120 C 160 T VJ
0
200
400
600 -diF/dt
800 A/s
1000
0
200
400
Fig. 24 Dynamic parameters Qr, IRM versus TVJ
1 K/W
Fig. 25 Recovery time trr versus -diF/dt
Fig. 26 Peak forward voltage VFR and tfr versus diF/dt
Constants for ZthJC calculation:
0.1 Z thJC
i 1 2 3
Rthi (K/W) 0.502 0.193 0.205
ti (s) 0.0052 0.0003 0.0162
0.01
0.001 0.00001
DSEP 29-06
0.0001
0.001
0.01
0.1
t
s
1
Fig. 27 Transient thermal resistance junction to case
(c) 2010 IXYS CORPORATION, All Rights Reserved
IXYS REF: G_60N60C3(6D)01-15-10-E


▲Up To Search▲   

 
Price & Availability of IXGT60N60C3D1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X